Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma.
نویسندگان
چکیده
Damp building-related illnesses (DBRI) include a myriad of respiratory, immunologic, and neurologic symptoms that are sometimes etiologically linked to aberrant indoor growth of the toxic black mold, Stachybotrys chartarum. Although supportive evidence for such linkages is limited, there are exciting new findings about this enigmatic organism relative to its environmental dissemination, novel bioactive components, unique cellular targets, and molecular mechanisms of action which provide insight into the S. chartarum's potential to evoke allergic sensitization, inflammation, and cytotoxicity in the upper and lower respiratory tracts. Macrocyclic trichothecene mycotoxins, produced by one chemotype of this fungus, are potent translational inhibitors and stress kinase activators that appear to be a critical underlying cause for a number of adverse effects. Notably, these toxins form covalent protein adducts in vitro and in vivo and, furthermore, cause neurotoxicity and inflammation in the nose and brain of the mouse. A second S. chartarum chemotype has recently been shown to produce atranones-mycotoxins that can induce pulmonary inflammation. Other biologically active products of this fungus that might contribute to pathophysiologic effects include proteinases, hemolysins, beta-glucan, and spirocyclic drimanes. Solving the enigma of whether Stachybotrys inhalation indeed contributes to DBRI will require studies of the pathophysiologic effects of low dose chronic exposure to well-characterized, standardized preparations of S. chartarum spores and mycelial fragments, and, coexposures with other environmental cofactors. Such studies must be linked to improved assessments of human exposure to this fungus and its bioactive constituents in indoor air using both state-of-the-art sampling/analytical methods and relevant biomarkers.
منابع مشابه
Trichothecene mycotoxins activate inflammatory response in human macrophages.
Damp building-related illnesses have caused concern for years in many countries. Although the problem is extensive, the knowledge of the immunological reactions behind damp building-related illnesses is still quite limited. Trichothecene mycotoxins form one major group of toxins, which possibly contribute to the illnesses. Stachybotrys chartarum is a well-known, but also controversial damp buil...
متن کاملDetection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment.
The existence of airborne mycotoxins in mold-contaminated buildings has long been hypothesized to be a potential occupant health risk. However, little work has been done to demonstrate the presence of these compounds in such environments. The presence of airborne macrocyclic trichothecene mycotoxins in indoor environments with known Stachybotrys chartarum contamination was therefore investigate...
متن کاملDetection of trichothecene mycotoxins in sera from individuals exposed to Stachybotrys chartarum in indoor environments.
To date, no study has effectively demonstrated a direct human exposure to mycotoxins in mold-contaminated buildings. Therefore, the authors investigated the presence of trichothecene mycotoxins in sera from individuals exposed to indoor molds (specifically Stachybotrys chartarum). Sera from occupants of contaminated (test samples, n=44) and uncontaminated (control samples, n=26) buildings were ...
متن کاملMicrofungal contamination of damp buildings--examples of risk constructions and risk materials.
To elucidate problems with microfungal infestation in indoor environments, a multidisciplinary collaborative pilot study, supported by a grant from the Danish Ministry of Housing and Urban Affairs, was performed on 72 mold-infected building materials from 23 buildings. Water leakage through roofs, rising damp, and defective plumbing installations were the main reasons for water damage with subs...
متن کاملMass spectrometry-based strategy for direct detection and quantification of some mycotoxins produced by Stachybotrys and Aspergillus spp. in indoor environments.
Dampness in buildings has been linked to adverse health effects, but the specific causative agents are unknown. Mycotoxins are secondary metabolites produced by molds and toxic to higher vertebrates. In this study, mass spectrometry was used to demonstrate the presence of mycotoxins predominantly produced by Aspergillus spp. and Stachybotrys spp. in buildings with either ongoing dampness or a h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 104 1 شماره
صفحات -
تاریخ انتشار 2008